Calculation formula to select the model of hot air generator

When used as hot air source

Capacity [kW] =
$$\frac{Q \times (\text{Outlet temperature [°C]} - \text{Inlet temperature [°C]})}{45}$$

- Q [m³/min] is the airflow volume under normal conditions (0°C 1 atm).
- $Q'[m^3/min]$ or $Q''[m^3/min]$ varies depending on temperature [°C].

$$Q' = Q \times \frac{273 + \text{Inlet temperature } [^{\circ}\!C]}{273} \quad Q'' = Q \times \frac{273 + \text{Outlet temperature } [^{\circ}\!C]}{273}$$

When used for convection

■ Capacity required to raise temperature inside furnace (100% hot air convection)

A: Surface area inside furnace $[m^2]$ B: Time for temperature increase [h] H $[kW/m^2]$ Heat loss through heat insulation wall (obtain based on Chart 1)

Capacity [kW] = A
$$\times \left(\frac{0.006 \times \text{Temperature increase [°C]}}{\text{Temperature increase time [h]}} + 0.7 \times \text{H} \right)$$

% The above result is for reference only. The capacity will vary significantly depending on the structure of the wall (thickness of inner wall, insulation performance, etc.).

- Capacity required to operate furnace Discharge

 Furnace

 Hot air generator
 - (A) Capacity required to heat work

 Processed work volume: A [kg]

 Work specific heat: B [J/kg°C]
 - (B) Capacity required to dry water

 Water volume to be vaporized : A [kq]
 - (C) Volume of heat released to the furnace
 - (D) Loss due to partial dischargeWhen taking fresh air at room temperature from the exhaust.

 $\label{eq:Capacity [kW] = } \frac{\text{AXBX Temperature increase [$^{\circ}$C]}}{3,\!600,\!000 \times \text{Temperature increase time [h]}}$

Capacity [kW] =
$$\frac{A \times 0.63}{Drying time [h]}$$

Capacity [kW] = Surface area inside furnace [m²] \times H [kW/m²]

H[kW/m²] obtained based on Chart 1

Exhausted air volume [m³/min] ×

Capacity [kW] = $\frac{\text{(Exhaust temperature [°C]-Room temperature [°C])}}{50}$

The capacity required during furnace operation is (A)+(B)+(C)+(D)